翻訳と辞書
Words near each other
・ General feature format
・ General Federation of Belgian Labour
・ General Federation of Iraqi Women
・ General Federation of Japanese Peasant Unions
・ General Directorate for National Roads and Highways
・ General Directorate for National Security
・ General Directorate for the Protection of State Secrets in the Press
・ General Directorate of Civil Emergencies
・ General Directorate of General Security
・ General Directorate of Highways (Turkey)
・ General Directorate of Mineral Research and Exploration (Turkey)
・ General Directorate of National Security
・ General Directorate of Security
・ General Directory for Catechesis
・ General Directory of War and Finance
General Dirichlet series
・ General disequilibrium
・ General Donovan
・ General Donovan Department
・ General Douglas MacArthur (Dean)
・ General Douglas MacArthur Handicap
・ General Douglas MacArthur Military Academy
・ General Drafting
・ General Duke
・ General Duke (horse)
・ General Dutch Fascist League
・ General Dutch Youth League
・ General duty clause
・ General Duval
・ General Dynamics


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

General Dirichlet series : ウィキペディア英語版
General Dirichlet series
In the field of mathematical analysis, a general Dirichlet series is an infinite series that takes the form of
: \sum_^a_n e^,
where a_n, s are complex numbers and \ is a strictly increasing sequence of positive numbers that tends to infinity.
A simple observation shows that an 'ordinary' Dirichlet series
: \sum_^\frac,
is obtained by substituting \lambda_n=\log n while a power series
: \sum_^a_n (e^)^n,
is obtained when \lambda_n=n.
== Fundamental theorems ==

If a Dirichlet series is convergent at s_0=\sigma_0+t_0i, then it is uniformly convergent in the domain
: |\text(s-s_0)|\leq\theta<\frac,
and convergent for any s=\sigma+ti where \sigma>\sigma_0.
There are now three possibilities regarding the convergence of a Dirichlet series, i.e. it may converge for all, for none or for some values of ''s''. In the latter case, there exist a \sigma_c such that the series is convergent for \sigma>\sigma_c and divergent for \sigma<\sigma_c. By convention, \sigma_c=\infty if the series converges nowhere and \sigma_c=-\infty if the series converges everywhere on the complex plane.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「General Dirichlet series」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.